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A bit of background...
Canonical (Ashtekar) variables: Aia = Γia[E] + iKi

a , E a
i = d3v e aiPoisson brackets as in Yang—Mills:

{E a
i (x), Ajb(y)} = 8πiGδijδ

a
b δ(x, y)

But also very different from Yang –Mills: the Hamiltonian is a sum ofconstraints (+boundary term at infinity),
Gi = DaE

a
i = 0 (generators of SL(2,C) gauge transformations)

Ha = F iabE
b
i = 0

H = 1
2
ε lmi F iabE

a
l E

b
m = 0

}
generators of hypersurface deformations

Observables commute with the constraints (gauge generators) nolocal observables in GR.
Dirac program: States Ψ are wave-functionals Ψ[q] of theconfiguration variable q. Particularly neat such functional is a Wilsonloop,

Ψα,j [A] = Trj
[
Pexp

(
−
∫
α

A
)]
.

In loop gravity, the entire state space is constructed by successivelyexciting such gravitational Wilson loops out of a vacuum thatrepresents no space at all.
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Spin network basis

Eigenstates of three-geometry are labelled by graphs Γ (combinatorial
structure) with spins ~ and intertwiners (Clebsch –Gordan coefficients) ~ι.

Ψ =
∑
Γ,~,~ι

ΨΓ,~,~ι

∣∣Γ,~,~ι 〉
We do not measure microscopic spins and intertwiners, rather components
of the Weyl tensor at infinity, mass, energy, angular momentum etc.
We thus need a description to translate microscopic spins and intertwiners
(defined locally) to physical observables (defined non-locally).∣∣Γ,~,~ι 〉 ?←→

∣∣M,J, . . .
〉

Two strategies: (i. relationalism) Anchor fields at other fields—e.g. using four
matter fields ϕµ as material reference systems xµ(ϕ). (ii. quasi-local approach)
Treat the gravitational field in a finite region as a Hamiltonian system. Anchor
the observables at a finite boundary, take the boundary to infinity.
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Coupling spin-networks to boundaries

Loop gravity boundary charges: Quantumthree-geometry described by spin networks. If they hit aboundary, a surface charge is excited (namely a spinor).
Ψα,j [A] = Trj

[
Pexp

(
−
∫
α
A
)]
.

What is the classical Hamiltonian description for these
loop gravity boundary spinors? What is their role in
classical GR?

ℓA
1

ℓA
2 ℓA

3

C

Figure 1: In LQG,
spinors appear as sur-
face charges wherever
a gravitational Wilson
line hits the boundary.

In LQG, the quantum states of the gravitational field are built
from Wilson loops Ψα[A] = Tr

(
Pexp(−

∮
α A)

)
for an SL(2, C) spin

connection AA
Bµ (the proposal is based on the covariant and orig-

inal self-dual connection). Each of these Wilson loops represents a
quantum of area, and as more and more such Wilson lines are excited
more and more geometry is created. These Wilson lines may meet
and intersect, and the resulting quantum states can be represented
pictorially as so-called spin networks, which were originally invented
by Roger Penrose [36] in the context of twistor theory.3

This picture of geometry consisting of an interwoven fabric of Wil-
son loops has to be modified if boundaries are introduced, in particular
boundaries that are null, which seems to be the most relevant case
physically: Any realistic observer has only access to a portion of spacetime inside a null-
cone, and it is therefore operationally appropriate and physically meaningful to consider
the quantisation of the gravitational field only in regions that are bounded by null surfaces.
If we then have such a null boundary, the gravitational Wilson lines can hit the boundary,
where they create a distributional surface charge, namely a spinor-valued surface operator
π̂A (a similar mechanism appears in string theory, where the Chan –Patton factors sit at
the open ends of strings). See figure 1 for an illustration.

At the classical level, these loop gravity boundary spinors [ww.1–3, ww.7, ww.8] can
be understood most easily by considering self-dual (complex) gravity [37, 38] in regions
bounded by null surfaces (see figure 2 for an illustration). The action in the bulk is given
by the BF topological action plus a constraint, namely

SM[Σ, A,Ψ] =
i

8πG

∫

M

ΣAB ∧ FAB[A] − 1
2ΨABCDΣAB ∧ ΣCD,

where4 ΣA
B = 1

2ΣA
Bµνdxµ ∧ dxν is the self-dual and sl(2, C)-valued Plebański two-form,

FA
B = FA

Bµνdxµ ∧ dxν is the curvature of the self-dual connection and ΨABCD =
Ψ(ABCD) is a spin (2, 0) Lagrange multiplier (the Weyl spinor) imposing Σ(AB ∧ ΣCD) = 0
(the simplicity constraint). The relation to general relativity in terms of metric variables
is given by the Urbantke formula [39],

g̃µν = d4x
√−g gµν =

i

6
ϵ̃αβγδΣA

BµαΣB
CγδΣ

C
Aνβ,

which determines the densitised four-metric g̃µν in terms of the SL(2, C) Lie algebra-valued
two-forms, with ϵ̃αβγδ denoting the totally antisymmetric Levi-Civita tensor density.

The presence of a null boundary requires then an additional boundary term in the
action—otherwise the variational problem is ill-posed. Using self-dual variables, this new
boundary term [ww.2, ww.3] is simply given by an SL(2, C) covariant symplectic potential
for a spinor ℓA (a ‘null flag’ ℓA) and a spinor-valued two-form ηA = 1

2ηAabdxa∧dxb intrinsic
to the boundary,

S∂M[η, ℓ|A] =
i

8πG

∫

∂M
ηA ∧ DℓA,

where D denotes the SL(2, C) covariant derivative.
3Part of the motivation for my programme is to return to these initial ideas and explore again the relation
between LQG and twistor theory. During the last couple of years a large number of papers have appeared
in the literature that support this idea, see also [18–23, ww.1–ww.4, ww.8] and references therein.

4Four-dimensional spacetime indices are denoted as µ, ν, . . . ; indices a, b, c . . . denote the pull-back to the
null boundary, left-handed spinors carry indices A, B,C, · · · = 0, 1.

QGNC – 3 of 22

Suggestive idea: The loop quantum gravity boundary spinors encodegravitational edge modes on the boundary of space time.
- Emerged out of spinor representation of LQG [L. Freidel, S. Speziale, E. Livine, Girelli, ww,
E. Bianchi et al.]- Quasi-local realisation of flat space holography [Grumiller, Barnich, Compere,...]
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Outline of the talk

1 Three dimensions
- Conformal boundary spinors for quantum gravity in three dimensions
- Quantisation of length without spin networks
2 Four dimensions
- Spinors as gravitational edge modes on null surface boundaries
- Quantisation of area without spin networks
3 Conclusion
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Conformal boundary CFT and 3d euclidean loopquantum gravity



Euclidean gravity in three dimensions for Λ = 0

C

B

M

Σ
C

ξA

Ψ

Figure 1: Left: We study three-dimensional euclidean gravity in an infinitely tall cylinder
M ≃ R×Σ. Its boundary is the two-dimensional world-tube B ≃ R×S1. The hypersurface
Σ intersects this boundary in a circular line C ≃ S1, which is assumed to have a finite
length. Right: In three-dimensional loop quantum gravity, the quantum states Ψ of
geometry are constructed from two-dimensional (planar) spin networks, which are built
from gravitational Wilson lines. These Wilson lines may hit the boundary, where they
create a spinor-valued surface operator ξA. The purpose of the paper is to study these
loop gravity boundary spinors from the perspective of the classical field theory.

2. Action and equations of motion

2.1. Action and boundary terms
In the absence of a cosmological constant, the vacuum Einstein equations
follow from the topological BF action2

SM[e,A] = − 1

8πG

∫

M

ei ∧ F i[A]. (1)

The action is a functional of the SU(2) spin connection Ai
a and the frame

fields ei
a that diagonalise the metric tensor

gab = δije
i
ae

j
b, (2)

where δij denotes the flat and internal Euclidean metric (internal indices
i, j, k, . . . are raised and lowered using this metric). The resulting equations

2We are using units of ! = c = 1, and we are in three dimensions, hence Newton’s
constant G has dimensions of length ∼ mass−1.

4

Setup: Euclidean gravity in threedimensions with vanishingcosmological constant.
Quasi-local approach: Gravity as aHamiltonian system in regions withboundaries at finite distance.
Bulk configuration variables: SU(2)spin connection Aia and possiblydegenerate triad eia. Correspondingmetric: gab = δije

i
ae
j
b.

The action in the bulk is topological. EOM given by flatness constraint
F i = d ∧Ai + 1

2
εilmA

l ∧Am = 0 and torsionless condition ∇∧ ei = 0.
SM[e,A] =

1

8πG

∫
M

ei ∧ F i[A].

Boundary conditions: Different boundary conditions require thendifferent boundary terms, which, in turn, lead to different boundary fieldtheories.
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Boundary conditions

Goal: Realise quantisation of geometry in terms of a (dual) conformalboundary field theory (for first-order spin connection variables).
The boundaryB = ∂M is two-dimensional. In two dimensions, theboundary metric hab = ϕ∗Bgab can be always diagonalised by applyingappropriate boundary diffeomorphisms.
The boundary metric is then fully characterised by a conformal factor
Ω and a fiducial two-dimensional metric qab.

Idea: Treat the conformal factor as a dynamical field (from theperspective of the boundary CFT), but fix its conjugate momentum (thetrace of the extrinsic curavture) through appropriate boundaryconditions. Simplest possibility: Ka
a = 0.

*E. Witten, A Note On Boundary Conditions In Euclidean Gravity, arXiv:1805.11559v1 (2018).
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Conformal boundary conditions

Idea: Treat the conformal factor as a dynamical composite field (from theperspective of the boundary CFT), but fix its conjugate momentum (thetrace of the extrinsic curavture). Simplest possibility: Ka
a = 0.

Conformal boundary conditions
ϕ∗Bgab ∈ [qab]⇔ ∃Ω : B→ R+ : ϕ∗Bgab = Ω−2qab,

K = ∇ana = 0.

Nota bene: K = 0 is the same as to say that the boundary is a minimalsurface (such as a soap film).
*W. Wieland, Conformal boundary conditions, loop quantum gravity and the continuum, JHEP 10 arXiv:1804.08643 (2018).
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SU(2) boundary spinors

Key observation: At the (cylindrical) boundaryB ofM there always exists a
spinor ξA and a complex-valued one-formma ∈ Ω1(B : C) such that the
pull-back of the triad assumes the following form:

ϕ∗Be
i
a =

4πG√
2
σ i
AB ξAξBma + cc.

Geometric interpretation
The dyade (ma, m̄a) determines the fiducial boundary metric:
qab = 2m(am̄b) (boundary indices raised and lowered with qab, qab).
The spinor ξA determines the (internal) normal ~n = 〈ξ|~σ|ξ〉/‖ξ‖2 tothe boundary.
The norm ‖ξ‖2 = δAA′ξ

Aξ̄A
′ ≡ 〈ξ|ξ〉 determines the conformal factor.

Conformal factor
ϕ∗Bgab = Ω−2qab = (4πG)2‖ξ‖4qab.
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Conformal boundary conditions in terms of boundary spinors

We can now neatly express the boundary conditions in terms of the
SU(2) boundary spinors.

metric formulation connection formulation
ϕ
∗
Bgab = Ω

−2
qab ϕ

∗
Be

i
a =

4πG√
2
σ

i
AB ξ

A
ξ
B
ma + cc.

K
a
a = 0 m

a
Daξ

A
= 0

Where we introduced the SU(2)× U(1) boundary covariant derivative:
SU(2)× U(1) boundary covariant derivative: DaξA = DaξA + 1

2i
ΓaξA.

SU(2) gauge covariant boundary derivative: Da = ϕ∗B∇a
U(1) fiducial boundary spin connection Γ: d ∧m+ iΓ ∧m = 0.
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Boundary conditions derived from bulk plus boundary action
Bulk plus boundary action:

S[A, e|ξ] =
1

8πG

∫
M

ei ∧ F i[A]− i√
2

∫
B

[
ξAm ∧DξA − cc.

]
Variation of the action yields equations of motion in the bulk (F i = 0 and
T i = ∇∧ ei = 0) plus boundary conditions:.
The glueing conditions linking the bulk and boundary theories.

ϕ∗Be
i
a =

4πG√
2
ξAξBσ i

AB ma + cc.

Taking into account the variation of the spinors themselves, we obtain theboundary field equations, namely
m ∧DξA − 1

2
dmξA = 0⇔ ma

Daξ
A = 0⇔ Ka

a = 0.

The holomorphicity of the boundary spinor implies that the boundary is aminimal surface. Boundary conditions = boundary EOMs.
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Hamiltonian analysis: Symplectic structure
Introduce a foliation and evaluate the first variation of the action.

C

B

M

Σ
C

ξA

Ψ

Figure 1: Left: We study three-dimensional euclidean gravity in an infinitely tall cylinder
M ≃ R×Σ. Its boundary is the two-dimensional world-tube B ≃ R×S1. The hypersurface
Σ intersects this boundary in a circular line C ≃ S1, which is assumed to have a finite
length. Right: In three-dimensional loop quantum gravity, the quantum states Ψ of
geometry are constructed from two-dimensional (planar) spin networks, which are built
from gravitational Wilson lines. These Wilson lines may hit the boundary, where they
create a spinor-valued surface operator ξA. The purpose of the paper is to study these
loop gravity boundary spinors from the perspective of the classical field theory.

2. Action and equations of motion

2.1. Action and boundary terms
In the absence of a cosmological constant, the vacuum Einstein equations
follow from the topological BF action2

SM[e,A] = − 1

8πG

∫

M

ei ∧ F i[A]. (1)

The action is a functional of the SU(2) spin connection Ai
a and the frame

fields ei
a that diagonalise the metric tensor

gab = δije
i
ae

j
b, (2)

where δij denotes the flat and internal Euclidean metric (internal indices
i, j, k, . . . are raised and lowered using this metric). The resulting equations

2We are using units of ! = c = 1, and we are in three dimensions, hence Newton’s
constant G has dimensions of length ∼ mass−1.

4

Pre-symplectic potential:
ΘΣ = − 1

8πG

∫
Σ

ei ∧ dAi+

− i√
2

∫
C

(ξAmdξA − cc.).

Gauge condition: Aia = 0,ma = ∂az/
√

2is admissible in the cylinder.
This is only partial gauge fixing: residual gauge transformations: ∂aΛi = 0.
Mode expansion ξA(z) =

1√
2π

∑
n∈Z

ξAn z
n and symplectic potential:

Θ =
1

2

∞∑
n=−∞

εABξ
A
n dξB−n−1 + cc.

Poisson brackets{
ξAn , ξ

B
m

}
= εABδm,−n−1,

{
ξ̄A
′

n , ξ̄B
′

m

}
= ε̄A

′B′δm,−n−1.
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SU(2) gauge transformations

To complete the Hamiltonian analysis, we consider gaugetransformations and observables.
Simplest: Internal SU(2) transformations, which act in the obvious way,

δΛe
i
a = εilmΛlema, δΛA

i
a = −∇aΛi, δΛξ

A =
1

2i
σABiΛ

iξB .

The vector fields δΛ define degenerate (gauge directions) of thepre-symplectic two-form ΩΣ = dΘΣ (even for large gauge transformationsnot vanishing at the boundary),
ΩΣ(δΛ, δ) = 0.
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Diffeomorphisms and conformal Killing vectors

The boundary action defines a CFT with vanishing central charge.
The conformal symmetries are generated by vector fields ta ∈ TM,whose restrictions to the boundary are conformal Killing vectors:

ta
∣∣
B
∈ TB : D(atb) −

1

2
qabDct

c = 0.

In the bulk, the diffeomorphisms act through the gauged Lie deriavtive
δte

i = Lte
i = ty(∇∧ ei) +∇∧ (tyei),

δtA
i = LtA

i = tyF i.

The boundary fields transfrom with conformal weight ( 1
2
, 0),

δtξ
A := taDaξ

A +
1

2
(m̄bmc

Dbtc)ξ
A.
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Quasi-local energy

For any such vector field the field variation δt is integrable,
ΩΣ(δt, δ) = −δEt[C].

Quasi-local charge on the boundary C = ∂Σ,
Et[C] = − i√

2

∫
C

[
tamaξADξ

A − cc.
]

=

∫
C

dvatbTab.

With the conserved and traceless (Brown –York) energy-momentumtensor,
Tab =

1√
2

[
mambξAm̄

c
Dcξ

A + cc.
]

= − 1

8πG
Kab.
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Virasoro algebra

Consider gauge choice where Aia = 0 andma = ∂az/
√

2,
Etn [C] = tnLn + cc., for: tan = tnz

n+1∂az + t̄nz̄
n+1∂az̄ .

Virasoro generators
Ln =

1

4

∞∑
m=−∞

(2m+ n+ 1) εABξ
A
−m−n−1ξ

B
m,

that satisfy the Virasoro algebra with vanishing central charge,{
Lm, Ln

}
= (m− n)Lm+n.
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Quantisation of length in three-dimensional euclideanquantum gravity



Super-metric of a loop
We now want to demonstrate length quantisation starting from the fieldtheory in the continuum.

Super-metric of a loop
The goal is now to quantise the boundary field theory and demonstartethe loop gravity discreteness of space using the description of thecontinuum field theory.
Consider a loop α winding once around the cylinder B = ∂M. Thephysical length of the loop is determined by the conformal factor.

α

B

M

Σ

C

α

αR
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Consider a loop α windingonce around the cylinder
B = ∂M.
Its physical length L[α] isdetermined by the conformalfactor, proportional to ‖ξ‖2.
L[α] =

∮
α

dτ

√
qabγ̇

aγ̇b × Ω

We use the mode expansion and find
L[α] = 4πG

∞∑
n,m=−∞

GmnAA′ [α]ξAmξ̄
A′
n .

Where we introduced the super-metric on the covariant phase space
GmnAA′ [α] =

1

2π

∮
α

ds
∣∣∣dz
ds

∣∣∣znz̄mδAA′ .
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Landau operators

Riemann mapping theorem implies that it suffices to show lengthquantisation for circles in the fiducial background metric qab = 2m(am̄b).
For a circle αR : |z|2 = R2, the metric is diagonal,

GmnAA′ = R2n+1δAA′δ
mn.

Suggesting to introduce the harmonic oscillators for n ≥ 0,
aAn =

1√
2

[
Rn+ 1

2 ξAn −
i

Rn+ 1
2

δAA′ ξ̄
A′
−n−1

]
,

bAn =
1√
2

[ 1

Rn+ 1
2

ξA−n−1 − iRn+ 1
2 δAA′ ξ̄

A′
n

]
.

Changing R amounts to change the frequency of the harmonic oscillators.
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Quantisation of length
Only non-vanishing Poisson brackets{

aAn , ā
A′
m

}
= iδmnδ

AA′ =
{
bAn , b̄

A′
m

}
.

Loop Gravity is based on the Ashtekar – Lewandowski vacuum, a statewith totally degenerate spatial geometry.
The boundary field theory analogue of this state in the continuum is nowsimply the Fock vacuum of the oscillators,

∀n ≥ 0 : aAn
∣∣0, αR〉 = bAn

∣∣0, αR〉 = 0

Choosing a normal ordering, the total length of a loop αR turns into thesum of two number operators.
L[αR] = 4πG

∞∑
n=0

δAA′
[
āA
′

n a
A
n + b̄A

′
n b

A
n

]
.

In three spacetime dimensions, Newton’s constant G has dimensions oflength. Possible eigenvalues for the circumference of the circle given by
0, 4πG, 8πG, 16πG, . . .
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Four dimensions: Spinors as gravitational edge modeson a null surface



Set up: quasi-local Hamiltonian analysis
Subsystems of the gravitational field with inner null boundariesN (allfields assumed to be regular onN, excluding e.g. focal points).

N

C1

C0

Σ1

ℓA

Figure 1: Left: We study three-dimensional euclidean gravity in an infinitely tall cylinder
M ≃ R×Σ. Its boundary is the two-dimensional world-tube B ≃ R×S1. The hypersurface
Σ intersects this boundary in a circular line C ≃ S1, which is assumed to have a finite
length. Right: In three-dimensional loop quantum gravity, the quantum states Ψ of
geometry are constructed from two-dimensional (planar) spin networks, which are built
from gravitational Wilson lines. These Wilson lines may hit the boundary, where they
create a spinor-valued surface operator ξA. The purpose of the paper is to study these
loop gravity boundary spinors from the perspective of the classical field theory.

2. Action and equations of motion

2.1. Action and boundary terms
In the absence of a cosmological constant, the vacuum Einstein equations
follow from the topological BF action2

SM[e,A] = − 1

8πG

∫

M

ei ∧ F i[A]. (1)

The action is a functional of the SU(2) spin connection Ai
a and the frame

fields ei
a that diagonalise the metric tensor

gab = δije
i
ae

j
b, (2)

where δij denotes the flat and internal Euclidean metric (internal indices
i, j, k, . . . are raised and lowered using this metric). The resulting equations
of motion are the flatness constraint

F i = dAi +
1

2
ϵijkA

j ∧ Ak = 0, (3)

2We are using units of ! = c = 1, and we are in three dimensions, hence Newton’s
constant G has dimensions of length ∼ mass−1.

4

Boundary consists of partial Cauchysurfaces Σ0, Σ1

and a null surfaceN (e.g. isolatedHorizon, but this is not necessary).

The gravitational action consists of bulk plus boundary contributions.
What counter term shall we put atN? Difficulty: there is now anadditional constraint to be imposed—that the boundary is null.
Working with self-dual Ashtekar variables in the bulk, we will findsuch a boundary term in terms of boundary spinors coupled to thespin connection in the bulk.

*R. Wald and A. Zoupas, A General Definition of “Conserved Quantities” in General Relativity and Other Theories of Gravity,Phys.Rev. D 61 (2000), arXiv::gr-qc/9911095.*T. Andrade and D. Marolf, Asymptotic symmetries from finite boxes, Class. Quant. Gravity. 33 (2016), arXiv:1508.02515.
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Key observation: Plebański two-form simplifies on null boundaries

On a null surface it is useful to work with forms rather than vectors.Given a tetrad eα, we have a hierarchy of p-forms: eα1 ∧ · · · ∧ eαp .
Plebański’s directed area two-form Σαβ = eα ∧ eβ splits into self-dualand anti-selfdual components:(

ΣAB ∅
∅ −Σ̄ B′

A′

)
= −1

8
[γα, γβ ]eα ∧ eβ .

On a null surfaceN, there always exists a spinor `A : N → C2 and a
spinor-valued two-form ηAab ∈ Ω2(N : C2) such that the pull-back of
ΣABab to the null surface can be parametrised as follows,

ϕ∗NΣABab = `(AηB)ab.

*[R. Capovilla, T. Jacobson, J. Dell, L. Mason, J. Plebański , K. Krasnov, H. Urbantke,...]
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Intrinsic null geometry in terms of ηAab and `A
The p-form spinors (ηAab, `

A) determine entire intrinsic geometry ofN.8 Wolfgang Wieland

N

C

ℓa

Figure 2. We are considering the gravitational field in a
four-dimensional causal region M, whose boundary has four
components, namely the three-dimensional null surfaces N+

and N−, which have the topology of a cylinder [0, 1]×S2, and
the spacelike disks Σ− and Σ+ at the top and bottom. The
boundary has three corners, which appear as the boundary
of the boundary, namely ∂N+ = C+ ∪ C−1

o and ∂N− =
Co ∪C−1

− . All these manifolds carry an orientation, which is
induced from the bulk: ∂M = Σ−1

− ∪ N− ∪ N+ ∪Σ+.

fundamental Poisson brackets are given by
{
πA(z), ℓB(z′)

}
C

= δB
Aδ

(2)(z, z′), (22a)
{
π̄A′(z), ℓ̄B

′
(z′)

}
C

= δB′
A′ δ

(2)(z, z′), (22b)

where δ2(·, ·) is the two-dimensional Dirac distribution at the corner. All
other Poisson brackets among the canonical variables vanish identically.

The spinors ℓA and πA are not arbitrary. The reality conditions (14)
constrain the spin (0, 0) singlet πAℓ

A to satisfy

C =
i

β + i
πAℓ

A + cc. = 0. (23)

The reality conditions are necessary for the spinors to be compatible with a
real and Lorentzian metric in a neighbourhood of the corner. On the C =
0 constraint hypersurface in phase space, we can then find the following
identities for the area in terms of the canonical variables, namely

Ar[C] = −i

∫

C

ηAℓ
A ≈ 1

2i

∫

C

(
ηAℓ

A − cc.
)

≈ 4πiβG

∫

C

(πAℓ
A − cc.). (24)

The spin ( 1
2
, 1

2
) vectorial component

`a ∼ i`A ¯̀A′ defines the null generators.
The spin (1, 0) tensorial component
η(A`B) defines the pull-back of theself-dual two-form ϕ∗ΣAB toN.

The Lorentz invariant spin (0, 0) scalar ε = −iηA`
A defines the

oriented area flux of any two-dimensional cross section C ofN
Areaε[C] =

∫
C

ε = −i

∫
C

ηA`
A.

The pair (ηAab, `
A) determines the intrinsic signature (0++)metric

qab = 2m(am̄b) onN completely.
25 /37



Two notions of area: densities vs. two-forms

Metrical area of a cross-section C

Areag[C] =

∫
C

dsdt

√
det

(
g(∂s, ∂s) g(∂s, ∂t)
g(∂t, ∂s) g(∂t, ∂t).

)
≥ 0.

Oriented area flux of a cross-section C

Areaε[C] = −i

∫
C

ηA`
A ∈ R.

Relative sign distinguishes ingoing from outgoing null boundaries.
Analogous to the two natural volume elements on the manifold,

d4x
√
− det gµν = ± 1

4!
εαβµνe

α ∧ eβ ∧ eµ ∧ eν .
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Extrinsic curvature

Boundary spinors (ηAab, `
A) determine the intrinsic geometry ofN.

Extrinsic geometry characterised by a U(1)C boundary connection ωaand a spinor-valued one-form ψAa modulo the equivalence relation
ωa ∼ ωa + fm̄a, ψAa ∼ ψAa − f`Am̄a.

Equivalence class [ωa, ψ
A
a ] determines the exterior covariantderivatives (shear+expansion+surface gravity)
D`A = +ω`A + ψA,

DηA = −ω ∧ ηA.

Complexified U(1)C transformations
ηAab −→ e−ζηAab, ψAa −→ e+ζψAa ,

`A −→ e+ζ`A, ωa −→ ωa + ∂aζ.
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New boundary term for the self-dual action

The boundary spinors enter the action through boundary terms.
Tetradic Hilbert –Palatini action in the bulk,

SM[A, e] =
i

8πG

∫
M

ΣAB [e] ∧ FAB [A] + cc.

SL(2,C)-invariant boundary action,
SN[A|η, `] =

i

8πG

∫
N

ηA ∧D`A︸ ︷︷ ︸
“pdq”

+cc.

bulk plus boundary action
S[A, e|η, `] = SM[A, e] + SN[A|η, `].
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Hamiltonian analysis

The variation of the action determines both the equations of motionand the symplectic potential.
δS = EOM · δ + Θ∂M(δ).

N

C1

C0

Σ1

Figure 1: Left: We study three-dimensional euclidean gravity in an infinitely tall cylinder
M ≃ R×Σ. Its boundary is the two-dimensional world-tube B ≃ R×S1. The hypersurface
Σ intersects this boundary in a circular line C ≃ S1, which is assumed to have a finite
length. Right: In three-dimensional loop quantum gravity, the quantum states Ψ of
geometry are constructed from two-dimensional (planar) spin networks, which are built
from gravitational Wilson lines. These Wilson lines may hit the boundary, where they
create a spinor-valued surface operator ξA. The purpose of the paper is to study these
loop gravity boundary spinors from the perspective of the classical field theory.

2. Action and equations of motion

2.1. Action and boundary terms
In the absence of a cosmological constant, the vacuum Einstein equations
follow from the topological BF action2

SM[e,A] = − 1

8πG

∫

M

ei ∧ F i[A]. (1)

The action is a functional of the SU(2) spin connection Ai
a and the frame

fields ei
a that diagonalise the metric tensor

gab = δije
i
ae

j
b, (2)

where δij denotes the flat and internal Euclidean metric (internal indices
i, j, k, . . . are raised and lowered using this metric). The resulting equations
of motion are the flatness constraint

F i = dAi +
1

2
ϵijkA

j ∧ Ak = 0, (3)

2We are using units of ! = c = 1, and we are in three dimensions, hence Newton’s
constant G has dimensions of length ∼ mass−1.

4

Θ∂M = ΘΣ1 + ΘΣ0 + ΘN .
Covariant Hamiltonian formalism
pre-symplectic two-form: ΩΣ = dΘΣ,

gauge symmetries: ΩΣ(δ, ·) = 0,

Hamilton equations: ΩΣ(δH , δ) = −δH.

*R. Wald and A. Zoupas, A General Definition of “Conserved Quantities” in General Relativity and Other Theories of Gravity,Phys.Rev. D 61 (2000), arXiv::gr-qc/9911095.
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Corner term in the symplectic potential on partial Cauchy surfaces

Covariant pre-symplectic potential for the partial Cauchy surfaces Σ
ΘΣ =

[
− i

8πG

∫
C

ηAd`
A +

i

8πG

∫
Σ

ΣAB ∧ dAAB
]

+ cc.

Poisson brackets at the two-dimensional corner{
ηAab(z), `

B(z′)
}
C

= 8πiGδBA
ˇ
εabδ

(2)(z, z′).

Pre-symplectic structure along the portion of the null surface
ΘN = − i

8πG

[ ∫
N

ηA`
A ∧ dω︸ ︷︷ ︸

‘Coulombic part’

+ ηA ∧ dψA︸ ︷︷ ︸
‘radiative part’

]
+cc. = “intr. ∧ extr. geometry”,

with D`A = ω`A + ψA onN.
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Fock quantization of area



Inclusion of the Barbero – Immirzi parameter γ

The Immirzi parameter γ > 0 is a coupling constant in front of the term
eα ∧ eβ ∧ Fαβ [A], which can be added to the action without changing theequations of motion. For γ 6= 0, we must modify then the boundaryaction as well.

Bulk action
SM[A, e] =

i

8πG

[ ∫
M

γ + i

γ
ΣAB ∧ FAB

]
+ cc.

Boundary action for the null surface
SN[A|η, `] =

i

8πG

[ ∫
N

γ + i

γ
ηA ∧D`A

]
+ cc.

Canonical momentum (spinor-valued two-form on the boundary)
πA :=

i

8πG

γ + i

γ
ηA.
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Reality conditions and Poisson brackets
The Poisson brackets for the boundary variables are{

πA(z), `B(z′)
}
C

= εABδ
(2)(z, z′).

Generator of complexified U(1)C transformations
L = − 1

2i
πA`

A + cc. (generator of U(1) transformations),
K = −1

2
πA`

A + cc. (dilatations of the null normal).
Upon introducing γ, the cross-sectional area is neither L norK, but

ε = −8πG
γ

γ + i
πA`

A.

For the area to be real-valued (charge neutral), we have to satisfy thereality conditions,
ε = ε̄⇔ K − γL = 0.
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Landau operators

Poisson brackets in the continuum{
πA(z), `B(z′)

}
= δBAδ

(2)(z, z′).

Strategy: Find creation and annihilation operators and quantise themin the continuum.
This requires two additional structures:

Fiducial hermitian metric: δAA′ = σAA′αn
α,

Fiducial area element: d2Ω = Ω2(ϑ, ϕ)sin2ϑ dϑ ∧ dϕ.

Gravitational Landau operators (half densities)
aA =

1√
2

[√
d2Ω δAA

′ ¯̀
A′ −

i√
d2Ω

πA
]
,

bA =
1√
2

[√
d2Ω `A +

i√
d2Ω

δAA
′
π̄A′

]
.

Poisson brackets{
aA(z), a∗B(z′)

}
=
{
bA(z), b∗B(z′)

}
= iδBAδ

(2)(z, z′).
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Fock quantisation of the area flux
Fock vacuum in the continuum

∀z ∈ C : aA(z)
∣∣{d2Ω, nα}, 0

〉
= 0,

bA(z)
∣∣{d2Ω, nα}, 0

〉
= 0.

Imposition of the reality conditions:
L̂(z) =

1

2

[
a†A(z)aA(z)− b†A(z)bA(z)

]
,

K̂(z) =
1

2i

[
aA(z)bA(z)− hc.

]
,[

K̂(z)− γL̂(z)
]
Ψphys = 0.

K̂ is a squeeze operator, L̂ plays the role of intrinsic spin.
Physical states exhibit quantization of area

̂Areaε[C]Ψphys = 4πγG

∫
C

[
a†Aa

A − b†AbA
]
Ψphys.

Possible measurement outcomes for cross-sectional area ofN
aj =

8πγ ~G
c3

j, 2j ∈ Z.
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Conclusion and Outlook



Summary
We started with a heuristic argument: In LQG, the quantum states of
geometry are built from gravitational Wilson lines for the spin connection. If
these Wilson lines hit a boundary, they excite a surface charge, namely a
spinor sitting at a puncture.
We then found the classical interpretation for these surface spinors:
The LQG boundary spinors appear already at the classical level as
gravitational edge modes in the Hamiltonian formalism in domains bounded
by null surfaces.
Quantisation of area in conventional Fock space: The generator of
dilatations of the null normal is simply the cross-sectional area. We then
quantised the area by quantising the boundary spinors using a conventional
Fock representation. Upon introducing the Immirzi parameter γ, we
reproduced the LQG quantisation of area without ever introducing spin
networks or discretizations of space.
Goals ahead: We now have two representation of quantum geometry, (i)
discrete spin network representation and (ii) boundary Fock representation.
Understand algebra of observables, relation to twistor theory, scattering
amplitudes.
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